Matemática discreta Ejemplos

Identificar los ceros y sus multiplicidades f(x)=x^4-8x^3+12x^2+24x-45
Paso 1
Establece igual a .
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 2.1.1
Reagrupa los términos.
Paso 2.1.2
Factoriza de .
Toca para ver más pasos...
Paso 2.1.2.1
Factoriza de .
Paso 2.1.2.2
Factoriza de .
Paso 2.1.2.3
Factoriza de .
Paso 2.1.3
Reescribe como .
Paso 2.1.4
Sea . Sustituye por todos los casos de .
Paso 2.1.5
Factoriza con el método AC.
Toca para ver más pasos...
Paso 2.1.5.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 2.1.5.2
Escribe la forma factorizada mediante estos números enteros.
Paso 2.1.6
Reemplaza todos los casos de con .
Paso 2.1.7
Factoriza de .
Toca para ver más pasos...
Paso 2.1.7.1
Factoriza de .
Paso 2.1.7.2
Factoriza de .
Paso 2.1.8
Sea . Sustituye por todos los casos de .
Paso 2.1.9
Factoriza con el método AC.
Toca para ver más pasos...
Paso 2.1.9.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 2.1.9.2
Escribe la forma factorizada mediante estos números enteros.
Paso 2.1.10
Factoriza.
Toca para ver más pasos...
Paso 2.1.10.1
Reemplaza todos los casos de con .
Paso 2.1.10.2
Elimina los paréntesis innecesarios.
Paso 2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.3.1
Establece igual a .
Paso 2.3.2
Resuelve en .
Toca para ver más pasos...
Paso 2.3.2.1
Suma a ambos lados de la ecuación.
Paso 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 2.3.2.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 2.3.2.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.3.2.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.3.2.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Suma a ambos lados de la ecuación.
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Suma a ambos lados de la ecuación.
Paso 2.6
La solución final comprende todos los valores que hacen verdadera. La multiplicidad de una raíz es la cantidad de veces que aparece la raíz.
(Multiplicidad de )
(Multiplicidad de )
(Multiplicidad de )
(Multiplicidad de )
(Multiplicidad de )
(Multiplicidad de )
(Multiplicidad de )
(Multiplicidad de )
Paso 3